
Research Article Vol. 15, No. 1 / 1 Jan 2024 / Biomedical Optics Express 199

Organelle-specific phase contrast microscopy
(OS-PCM) enables facile correlation study of
organelles and proteins

CHEN CHEN,1 ZACHARY J. SMITH,1,2 JINGDE FANG,1,4 AND
KAIQIN CHU2,3,5

1Department of Precision Machinery and Precision Instrumentation, University of Science and Technology
of China, Hefei, Anhui 230027, China
2Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of
Science and Technology of China, Hefei, Anhui 230027, China
3Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu
215123, China
4jdfang@mail.ustc.edu.cn
5kqchu@ustc.edu.cn

Abstract: Current methods for studying organelle and protein interactions and correlations
depend on multiplex fluorescent labeling, which is experimentally complex and harmful to
cells. Here we propose to solve this challenge via OS-PCM, where organelles are imaged and
segmented without labels, and combined with standard fluorescence microscopy of protein
distributions. In this work, we develop new neural networks to obtain unlabeled organelle, nucleus
and membrane predictions from a single 2D image. Automated analysis is also implemented
to obtain quantitative information regarding the spatial distribution and co-localization of both
protein and organelle, as well as their relationship to the landmark structures of nucleus and
membrane. Using mitochondria and DRP1 protein as a proof-of-concept, we conducted a
correlation study where only DRP1 is labeled, with results consistent with prior reports utilizing
multiplex labeling. Thus our work demonstrates that OS-PCM simplifies the correlation study of
organelles and proteins.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Organelles are important functional subunits of cells where they regulate the cell state and
accomplish various physiological activities [1]. For example, mitochondria provide energy
and modulate stress response for cellular activities and health, or the endoplasmic reticulum
(ER), which is involved in the synthesis and processing of intracellular proteins [2]. Organelles
also interact with each other to regulate a variety of physiological activities through membrane
contact and fusion, which facilitates the production and transportation of proteins, lipids and
other substances in the cell. This means that many proteins are closely associated with organelles.
Through the correlative study of the temporal and spatial distribution of both the organelles and
proteins, insights about the functions of those structures and physiological state of the cell can be
revealed. On the other hand, the misdistribution of organelles and proteins is usually associated
with cellular dysfunction and disease such as cancer and Alzheimer [3].

Currently, the study on the spatial distribution of organelles and proteins is mainly accomplished
through fluorescence imaging [4,5]. However, the phototoxicity associated with fluorescent
labeling causes cell damage and the photobleaching prevents long term observation of cell
activities [6]. In addition, the cell membrane and nucleus are the natural inner and outer
boundaries for many organelles and proteins in a cell. Accordingly, they are often used as two
important landmark structures to analyze the spatial distribution of organelles and proteins [7,8].
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To this end, it is often necessary to label the nucleus and cell membrane in addition to the
proteins and organelles of interest. Yet, this multiple labeling greatly increases the complexity of
sample preparation and requires multiple fluorescence channels. More importantly, the adverse
effect from label-induced phototoxicity and photobleaching are greatly increased due to the large
surface and volume of the landmark structures [6].

Label-free imaging methods such as quantitative phase microscopy offer attractive alternatives
due to their ability to image samples for a long time with minimal photo-damage [9,10]. The
image contrast in phase microscopy is derived from intrinsic signals, i.e., the refractive index
distribution of the sample. However, phase microscopy techniques lack specificity and it is
difficult to segment and determine the types of subcellular structures without a priori knowledge.
Recently deep learning techniques have made tremendous progress in cell recognition [11,12].
However, segmentation success at the subcellular level is still scarce in the literature due to
the low resolution of most label free images [13,14]. Note that in order to perform correlation
study between organelle and protein, the morphology of the organelle should be well resolved
in the image. When the resolution and contrast of the label-free image lacks subcellular detail,
deep-learning can, at best, make educated guesses about organelle distribution. Among the
few successes reported to date [15–18] our technique (termed organelle-specific phase contrast
microscopy, OS-PCM) has been shown to accurately recognize various organelles in an unlabeled
cell due to the high resolution and contrast in images acquired by our phase microscope [19].
We have reported the first success of obtaining detailed morphology of mitochondria as well
as the studying of organelle interactions using unlabeled cell images [16,20]. To briefly recap
OS-PCM, high resolution, high contrast phase images are acquired using our ultra-oblique phase
contrast microscopy instrument. The phase channel performs panoramic imaging of the cell
where organelles of interest and the important boundaries of the cell are automatically identified
via a neural network. Our phase contrast microscope can be naturally coupled with fluorescence.
Therefore, previously we have used a fluorescent channel to generate ground-truth data of
organelle distributions for training artificial intelligence networks for organelle segmentation. In
doing so we have accurately segmented mitochondrial networks, lysosomes, and lipid droplets
which have been used to study mitochondrion-lysosome interaction under different physiological
conditions [20], as well as coupled to Raman spectroscopy for facile in situ lipid droplet profiling
[21].

To date, however, we have focused on larger organelle-level structures which can be well
imaged by our label-free microscope, and the fluorescence channel is used simply to provide
ground truth information for training a deep network. Here, we will further explore the application
of this technology in the correlation study of proteins and organelles, where the fluorescence
channel is used to image protein distributions that are still beyond the reach of label-free methods.
However, in contrast with pure fluorescence-based methods [4,5,22], where at least 3 or 4 labels
are required for organelles and protein of interest as well the nucleus and cell membrane, here
we only need to label the protein, while information such as the target organelle and cellular
landmark information can be obtained through OS-PCM. By eliminating the need to stain
organelles and landmark structures, whose sizes are several orders of magnitude larger than that
of proteins, our method has the promise to greatly reduce the volume or amount of labelling and
the associated phototoxicity, thus facilitating the study of cellular activities and dynamics with
minimal interference. For example, mitochondria respond to oxidative stress, and thus the ability
to obtain their spatial distribution without phototoxicity is beneficial to the study of their function
with minimum experimental interference [23]. Here we use OS-PCM to perform panoramic
imaging of the cell where organelles of interest and the important boundaries of the cell are
automatically identified. Simultaneously, a fluorescence channel images the labeled protein. In
this way, we obtain the distribution of organelles and proteins and their relative positions in a
cell, which are further used to analyze their interactions under different physiological conditions.
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In this work, mitochondria and the protein DRP1 are used as an example to demonstrate
the capability of OS-PCM in the correlation study of organelle and protein. Mitochondria, as
discussed above, are under extensive study by biologists due to its important roles in cell state
and disease [24]. DRP1 is found previously to be not only associated with the fission of the
mitochondria [25] but also involved in other cellular activities [4]. Previous study on their
correlation are based on multiple fluorescence labeling [5,26]. Here we wish to conduct a similar
study with a single labeling. We will first use OS-PCM to collect cell images where mitochondria,
nuclei and cell membranes are unlabeled, and train deep learning networks to identify them
automatically. Further we will also develop automatic analysis to obtain the spatial distribution of
mitochondria and DRP1 with respect to the cell’s inner and outer boundaries. Typical correlation
studies of DRP1 and other organelles rely on multiple labeling and analyze only a few small
regions of interest selected from a cell image [4,5,27]. With OS-PCM, we can examine the
whole cell with high spatial and temporal resolution, easily obtaining time lapse data. In this
work, we found that the ratio of DRP1 colocalized with mitochondria is about 30% in a normal
cell, which is consistent with prior report [26]. An important aspect of the OS-PCM method
is that, while automatic organelle recognition can be accomplished by a trained network, the
underlying, panoramic phase image is always available. Thus, for example, when we observed
DRP1 aggregates that were not co-localized with mitochondria, we could return to the label free
phase image and determine where in the cell the DRP1 aggregates were (in this case, primarily
on the ER). In a traditional fluorescence experiment, by contrast, anything that is not expressly
labeled is completely “invisible” to the experimenter. We further emphasize that in this study we
obtained this plethora of quantitative information using a system where only the DRP1 protein
needs be labeled. Thus, we have demonstrated that OS-PCM plus a single fluorescent channel is
an attractive alternative to multiplex fluorescence imaging for the study of organelle and protein
interactions.

2. Materials and methods

2.1. High resolution multimodal microscopy

Our OS-PCM system has both phase and fluorescence channels, as shown in Fig. 1. For a
detailed description of the instrument, please refer to our prior report [16]. Briefly, a circular
LED with a center wavelength of 505 nm was used as the light source for the phase channel.
Both scattered and non-scattered light were collected through a Nikon Plan Apo 60X objective
lens with a numerical aperture (NA) of 1.49. The non-scattered light was modulated by a spatial
light modulator (Meadowlark Optics, ODPDM512-0532-P8) with a phase shift of π/2 and an
attenuation of OD1 using a ring-shaped mask. The fluorescence channel utilized a 577 nm
laser (Changchun Xinchuang Optoelectronic Technology, MGL-F-577) as the light source, and
is separated from the phase channel through a dichroic mirror (Thorlabs, FELH0600). Both
channels had similar spatial resolution of ∼250 nm, identical magnification (120x) and fields of
view (∼200um), The images were captured using sCMOS cameras (Andor, ZYLA-4.2P-CL10),
and data acquisition was controlled by LabVIEW. In this work, we have used a relatively thin cell
(COS 7) to study the correlation between mitochondria and DRP1. As such, we have collected
2D images and the subsequent analysis and conclusions are thus limited to thin cells.

The registration of the phase and fluorescence channels was achieved by obtaining a regis-
tration matrix from captured images of microspheres (co-registered beads images are shown in
Supplement 1 Fig. S1). This matrix was then used to perform transformation on the protein
images.

https://doi.org/10.6084/m9.figshare.24720207
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Fig. 1. Overview of the correlation study between organelles and proteins using OS-PCM.
Two-dimensional cell image is collected through the phase channel where the organelles
(mitochondria is used as an example here), nucleus and cell membrane are identified
through trained CNN networks. Protein images are obtained through the fluorescent channel.
Automatic morphology analysis are performed to obtain the positional information for the
correlation study of proteins and organelles.

2.2. Automatic segmentation of specific structures through neural networks and their
training

As both mitochondria and DRP1 are highly dynamic, in this proof of concept study, we will
perform correlation studies based on 2D images. The phase images are acquired with phase
shifting fixed at π/2, which is different than what we have used in our previous works [16,20].
In our previous mitochondria prediction works, we have either used 3D SLIM images with
similar resolution or 2D images with a higher resolution (a different system with blue LED
illumination). These changes both simplify and speed up the image acquisition process (as 3D
images and phase shifting were not performed). However, this places a higher burden on the deep
learning network to identify the mitochondria and other structures. Thus in terms of mitochondria
prediction for the purpose of this work, we collected new training and testing data and retrained
our previously-reported mode. A total of 460 pairs of fluorescence and phase images of COS7
cells (among which 100 are new) are used for the training and testing of mitochondria prediction
neural network. For nuclei and cell membrane recognition, brand new models are constructed
and trained with a 300 pairs of nucleus images and 99 pairs of cell membrane images. All data
were divided into training and testing sets in an 80:20 ratio. Mean Square Error (MSE) was
employed as the loss function for all training processes. Structural similarity index measure
(SSIM) is used for the evaluation of the prediction accuracy of mitochondria and Pixel Accuracy
(PA) for nucleus and membrane respectively.

While our previous work [16] has shown that the networks can be generalized to other cell
types, the neural network would likely need to be retrained using example data of other cell types
for optimum performance. Additionally, the cells studied here are thin, such that membrane,
nucleus, and mitochondria can be well resolved using a single 2D image. For thicker cells where
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these objects are not co-planar, 3D imaging may be required, which would come at a cost to
temporal resolution.

2.3. Image preprocessing and distance analysis

In order to obtain DRP1 aggregate images, we have followed a procedure outlined in Ref.
[5]. First we used the imageJ plugin ‘Rollingball’ to remove the diffusive background in the
fluorescence image. The ball radius was selected as 5 pixels based on the average outer diameter
of the DRP1 oligomer (∼120 nm [28]) and the system resolution (54.2 nm per pixel). Then a
value of 99.9% of the maximum intensity is used as the threshold to obtain the binarized image.
After morphological operations such as removing small targets and dilation, DRP1 aggregate
images are obtained. The number of aggregate is reported to increase during cell apoptosis [5].

The spatial distribution of organelles or proteins can be determined by their positions in the
segmented images. Information about their positions (distances) Localizing them with respect to
the inner and outer boundaries of the cell is advantageous for analyzing their functions [8,22].
Following prior work based on multiple labeling, here we can obtain the distance information
with a single labeling. To achieve this, we binarized the recognized nucleus and cell membrane in
the phase image and obtained the edges of these landmark objects. Mitochondria and DRP1 were
then measured with respect to these edges. For mitochondria, the recognized mitochondria from
the phase images are further binarized by ‘Mitometer’ which is a recently developed mitochondria
analysis tool [29]. With the boundary information of mitochondria, cell membrane, and nucleus,
we can calculate their distances with respect to each other. Using the line formed by the centroids
of mitochondria and nucleus, we can locate the corresponding boundaries of the nucleus and cell
membrane and the consequent distances from mitochondria to the nucleus Dmito−nuc and from
mitochondria to the cell membrane . This allows us to calculate the distances of mitochondria to
the nucleus relative to Dmito−mem the cell width along the same axis:

Drel
mito−nuc =

Dmito−nuc

Dnuc−mem

where Dnuc−mem = Dmito−nuc+Dmito−mem, and represents the cell width along the vector connecting
the mitochondria and nucleus centroids. Naturally, then, the relative distance between the
mitochondria and the membrane is 1-Drel

mito−nuc. Arbitrarily selecting the horizontal direction as 0
degrees, the distances of individual mitochondria can then be parsed and grouped together based
on their angular position within the cell.

Similarly, we can compute the relative distance for the protein as well and here we use
Drel

DRP1−nuc to represent the relative distance of DRP1 to the nucleus. For the cell-level analysis,
the mean value of the relative distances is used and consequently we have D̄rel

mito−nuc and D̄rel
DRP1−nuc

to represent the mean relative distance of mitochondria and DRP1 respectively.

2.4. Sample preparation

In this paper, following prior reports [8,30], COS 7 cells were cultured to study the correlation of
mitochondria and DRP1 with a single label. Standard preparation procedures are used to culture,
transfect and treat cells, and complete details can be found in the Supplement 1.

3. Results

3.1. OS-PCM methodology of correlation study between organelles and proteins

Figure 1 provides an overview of the OS-PCM method. Unlabeled organelles, as well as the cell
nucleus and cell membrane, are captured using high-resolution phase contrast microscopy and
identified using a trained CNN. Protein images are obtained through the fluorescent channel of
the microscope. Here, we use mitochondria and the associated protein DRP1 as an example to

https://doi.org/10.6084/m9.figshare.24720207
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demonstrate the performance of OS-PCM. The prediction accuracy for the mitochondria is 0.9289
(SSIM), 98.73% and 96.14% (PA) for nuclei and membrane respectively. More quantitative
results of mitochondrial, nucleus, and cell membrane recognition can be found in the Supplement
1 Figures S2 and S3. With the prediction results, one can obtain morphological information
of the cell membrane, cell nucleus, mitochondria automatically through the analysis methods
described in 2.3. Number and spatial distribution of DRP1 aggregates can also be obtained using
methods described in 2.3. Thus we can easily examine their colocalization and changes due to
treatment, their movements to each other and with respect to the inner and outer boundaries of the
cell. Since only protein labeling is performed and the volume of protein is orders of magnitude
smaller than organelles, nucleus and membrane, the OS-PCM method greatly reduces the impact
of photobleaching compared to traditional methods which require multiple labeling, allowing for
long term observation of cellular activities.

3.2. Automatic analysis of the spatial distribution of mitochondria and DRP1 in cells

As mentioned in the introduction, to study the spatial distribution of DRP1 and mitochondria, it is
essential to not only obtain the positional information of these two objects but also relate them to
important cellular landmarks, typically the cell nucleus and membrane. As described in Section
3.1, mitochondria, the cell nucleus, and the cell membrane can be identified from phase channel
of OS-PCM without fluorescent labeling. Figure 2(a) shows an example of the phase image of
cell membrane, nucleus, and mitochondria, along with their 2D prediction results. By combining
these identification results (Fig. 2(b)), we can clearly observe the distribution of mitochondria
within the cell, particularly their proximity to the inner and outer boundaries. To quantify the
distribution of mitochondria, we calculate the distances of mitochondria with respect to the cell
nucleus and cell membrane, as shown in Fig. 2(c). Details about the distance calculation can be
found in Methods and materials. We find that the distances of mitochondria to the cell nucleus
Dmito−nuc and the distance to the cell membrane Dmito−mem exhibit a consistent trend. Specifically,
mitochondria tend to be closer to the cell nucleus in regions where the cell membrane contracts,
while they tend to move away from the nucleus and approach the cell membrane in regions
where the cell membrane expands. Thus, the mitochondria tend to prefer a relatively meridional
position distribution in COS7 cells. We will further explore and analyze the spatial distribution
of mitochondria in the subsequent section.

DRP1 can exist both as monomers and as aggregates inside a cell and show up as both diffuse
and punctate distributions in fluorescence images (as shown in the top image of Fig. 2(d)). The
punctate distribution represents the formation of molecular aggregates (rings in this case), which
are commonly associated with mitochondrial fission [25]. After obtaining the fluorescence
images of DRP1 using OS-PCM, we applied the Rolling Ball background subtraction in ImageJ
and then utilized a thresholding method to extract DRP1 aggregates (detailed steps can be found
in the Materials and Methods section), with results shown in the bottom image of Fig. 2(d). By
merging the segmentation results of DRP1 with those of the mitochondria, the cell nucleus and
the membrane, we obtained the combined image as shown in Fig. 2(b). One can see that DRP1
aggregates are distributed both in the cytoplasm region and on mitochondria (as exemplified in
Fig. 2(e)). Based on the cumulative distribution of the distances between DRP1 and mitochondria
(as shown in Fig. 2(f)), we found that some DRP1 aggregates do not co-localize with mitochondria
but remain relatively close to them. The colocalization of DRP1 and mitochondria suggests the
involvement of DRP1 in the mitochondria dynamics (more specifically fission). In the depicted
cell shown in Fig. 2, approximately 30% of DRP1 aggregates were found on mitochondria, a
number which is consistent with previous reports based purely on fluorescence imaging and
through manual analysis [26]. Note that here colocalization is defined as the distance between
DRP1 and mitochondria being less than 300 nm. Nevertheless, it is clear that not all DRP1
aggregates are on mitochondria.

https://doi.org/10.6084/m9.figshare.24720207
https://doi.org/10.6084/m9.figshare.24720207
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Fig. 2. Images by OS-PCM and the extracted information. (a) Identification of mitochondria,
cell membrane and nucleus from the phase image. (b) Merged images based on the
identification results(green: mitochondria; Red: DRP1 aggregate; Blue: nucleus; cyan:
cell membrane) where the direction and the distance of the mitochondria with respect to
the nucleus and membrane are marked as θ, Dmito−nuc and Dmito−nuc respectively;(c) The
distribution of the distances between mitochondria and the cell nucleus or cell membrane
showing that they are highly correlated;(d) Segmentation results of DRP1 aggregate using
thresholding.(e) Two examples of DRP1 on or near mitochondria;(f) CDF(Cumulative
Distribution Function) of the distance between DRP1 and mitochondria. Scale bars in (a,b,d)
represent 10 µm and in (e) 2 µm.

In order to find out where non-mitochondrial DRP1 aggregates are, we can exploit one of
the key advantages of the OS-PCM method, described in the introduction, where we can return
to the original, panoramic phase images. Due to our phase microscope’s exquisite contrast
and resolution, these images provide information about essentially all of the membrane-bound
structures within the cell, including even fine and dim structures such as the ER. As shown
in Fig. 3 (Left), by examining the phase images carefully, we can observe that most of the
non-mitochondrial DRP1 aggregates are actually found on the endoplasmic reticulum, which
can be seen by our phase microscope [19]. In addition, examples of dynamic behavior between
DRP1 aggregates and mitochondria can be seen in Fig. 3 (Right).

3.3. Consistency of the relative distribution of mitochondria within cells

In the previous section, it was shown that mitochondria exhibit consistency in their relative
positions to the cell nucleus and membrane. To determine if this phenomenon is universal, we
analyzed 10 cells of different sizes and shapes. The results are shown in Fig. 4.
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Fig. 3. Left: Examples of DRP1 colocalization with the endoplasmic reticulum during the
observed time period. Blue arrows point to DRP1 aggregates and the net-like structures are
ER. The green-colored structures in (a) are mitochondria. Right: 4 Various dynamic behavior
of DRP1 and mitochondria. (d) DRP1 is directly involved in mitochondrial fission. (e) DRP1
is observed to move on the mitochondria but does not induce fission. (f) DRP1 originally in
the cytoplasm moves toward mitochondria, establishing stable contact with mitochondria
for a certain period of time. However, during this contact, there is no mitochondrial fission.
(g) DRP1 remains on mitochondria during mitochondrial movement. Scale bars in (a-g)
represent 2 µm.

Fig. 4. Distribution of mitochondria in cells of different shapes. (a-b) Identification results for
cell 1 (regularly shaped) and cell 2 (irregularly shaped); (c-d) Distance distributions between
mitochondria and the cell nucleus or cell membrane in cell 1 and 2;(e-f) Distributions of the
absolute and relative distances between mitochondria and the cell nucleus for cell 1 and 2;(g)
Distribution of the mean relative distances (blue) and absolute distances (orange) between
mitochondria and the cell nucleus. Each dot in (e-f) represents individual mitochondria
while dots in (g) represent cell-level data. Scale bars in (a-b) represent 10 µm.

We found that in both “regular” and “irregular” cells (as shown in Fig. 4(a-b)), the distribution
of distances between mitochondria and the nucleus or membrane exhibited consistent trends
(Fig. 4(c-d)). After careful examination of the cell images shown in (a) and (b), one found that
mitochondria tends to cluster in the directions of the cell growth. This is consistent with literature
reports (for example, [22]). As the cells have radically different sizes and shapes, we define the
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relative distances, Drel
mito−nuc and Drel

mito−mem, which are ratios of the mitochondria to the nucleus or
the cell membrane with respect to the distance between the nucleus and membrane (i.e. a measure
of the cell width) versus angle. For details of the calculation, please refer to the Materials and
Methods section. The results are shown in Fig. 4(e-f), where we observed that even though the
distributions are wide for both the relative and absolute distance of mitochondria, the mean of
the relative distances were around 0.4-0.5 in both regular and irregular cells. For the absolute
distances between mitochondria and the nucleus, however, they were significantly different in
regular and irregular cells. Considering that the cell types and culture conditions were the
same, these differences in absolute distances were likely due to variations in cell size and shape.
Therefore, we believe that when analyzing the spatial distribution of mitochondria within cells,
relative distances may be more meaningful than absolute distances. To further support this, we
analyzed mitochondria in 10 cells with results shown in Fig. 4(g). Note here each dot represents
cell-level data. For the mitochondria distribution within other 8 cells, please refer to Supplement
1 Fig. S4 for details. The mean values of the absolute and relative distances are used to plot
Fig. 4 g. One can see that despite the wide range of absolute distances of mitochondria from the
nucleus (10-20µm, with a coefficient of variation of ∼23%), the mean relative distribution was
confined to the range of 0.4-0.6 with a coefficient of variation of ∼12%, further confirming the
consistency of mitochondrial distribution within a given cell line.

3.4. Distribution changes of DRP1 and mitochondria in apoptotic cells

Studies have shown that mitochondrial fission events increase during apoptosis [31], with DRP1
accumulating more prevalently on mitochondria [26,32]. Usually such studies rely on labeling
both DRP1 and mitochondria, and only few isolated regions of interest are selected for analysis.
Here we use OS-PCM to label only DRP1 without labeling mitochondria, and obtain the spatial
information of both structures and their changes within the whole cell during apoptosis. Here,
the apoptosis is induced through treating cells with Ionomycin (More details in Supplement 1).

Figure 5 shows the changes in mitochondria and DRP1 aggregates induced by apoptosis
compared to the control group. As shown in Fig. 5(a) and (b), the apoptotic cells exhibit evident
membrane shrinkage, and the mitochondria also move closer to the cell nucleus compared to the
normal cell. To quantify the changes due to apoptosis, we selected nine cells from each group
and analyzed the distributions of DRP1 and mitochondria. Since there are many mitochondria
and DRP1 aggregates in a cell, the mean values of the relative distance computed from each
cell are used to represent the cell-level data. Firstly, we examined whether apoptosis altered
their relative positions. From the results shown in Fig. 5(c) and (d), one can see that the relative
position of mitochondria does not show significant changes while DRP1 distribution moves
closer to the nucleus. Taking into account the increase in DRP1 aggregates during apoptosis,
this may imply that during apoptosis DRP1 aggregates undergo growth near the cell nucleus or
that DRP1 aggregates in the periphery of the cell converge towards the nucleus at a faster rate
than the contraction of the cell membrane. We will further explore this issue in the following
section. Figure 5(e) demonstrates that during apoptosis, the number of DRP1 aggregates located
on mitochondria increases, indicating that DRP1, as expected, may be involved in mitochondrial
fission during cell apoptosis [26]. Another example of the cell images showing DRP1 and
mitochondrial changes during apoptosis can be found in Supplement 1 Fig. S5.

In order to further investigate changes in DRP1 during apoptosis, we conducted time-lapse
observation and analysis of cells after adding 4µM ionomycin, with results shown in Fig. 6.
Figure 6(a) shows the merged snapshots of DRP1 with mitochondria and the cell landmarks at
0, 15 minutes, and 30 minutes. One can see that mitochondria shrink, while DRP1 aggregates
increase significantly during apoptosis. Next, we analyzed the complete time course, where
Fig. 6(b) shows an increase in both the total number of DRP1 aggregates and the number of DRP1
aggregates on mitochondria. However, the proportion of DRP1 aggregates on mitochondria

https://doi.org/10.6084/m9.figshare.24720207
https://doi.org/10.6084/m9.figshare.24720207
https://doi.org/10.6084/m9.figshare.24720207
https://doi.org/10.6084/m9.figshare.24720207
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Fig. 5. Changes of DRP1 and mitochondria during apoptosis. (a-b) exemplary cell images
from the control and the treatment group (green: mitochondria; red: DRP1 aggregate;
blue: nucleus; cyan: cell membrane). (c-d) Distribution of the mean relative distance for
mitochondria and DRP1 from the cell nucleus respectively; (e) Number of DRP1 aggregates
co-localized with mitochondria. (f) Among the total DRP1 aggregates, the ratio of aggregates
that are co-localized with mitochondria. Each dot in (c-f) represents a cell-level data. Scale
bars in (a-b) represent 10 µm

Fig. 6. Time course of DRP1 during apoptosis. (a) Cellular images at three time points: 0,
15 and 30 minutes (where the color representation is the same as Fig. 4(a)); (b) Total number
of DRP1 aggregates (orange) and the number of DRP1 aggregates on mitochondria (blue);
(c) Proportion of DRP1 aggregates on mitochondria among the total DRP1 aggregates; (d)
The mean relative distance between DRP1 aggregates and the cell nucleus; (e) Distribution
of the absolute distances between DRP1 and the cell nucleus at 0, 15 and 30 minutes after
adding ionomycin. Scale bar in (a) represents 10 µm.
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with respect to the total number of the aggregates does not show significant change (Fig. 6(c)),
consistent with the results shown in Fig. 5(f). Here only ∼27% of DRP1 aggregates co-localize
with mitochondria. By analyzing the spatial relationship between DRP1 and the nucleus (as
shown in Fig. 6(d)), we found that during apoptosis, DRP1 aggregates tend to appear more
frequently in the vicinity of the cell nucleus. In order to analyze the generation site of new
DRP1 aggregates during apoptosis, we calculated the relative distance between DRP1 and the
nucleus at 0, 15 and 30 minutes after treatment with results shown in Fig. 6(e). One finds that
compared to 0 minutes, the number of DRP1 aggregates increases everywhere at 15 minutes;
At 30 minutes, the number of aggregates within 50% of the relative distance from the nucleus
increased, while the number of aggregates exceeding 50% decreased. From this we may conclude
that the main reason for the decrease in average distance DDRP1−nuc is due to the newly formed
DRP1 aggregates near the nucleus and the movement of DRP1 toward the nucleus.

4. Summary and discussion

In this paper, we have taken our previously reported OS-PCM paradigm, and extended it to
make full use of the fluorescence channel within the system to allow for the correlation study of
the spatial distribution and interactions between organelles and proteins with minimal labeling.
This technique utilizes high-resolution phase contrast microscopy and a CNN network to obtain
label-free information about organelles and other cellular landmarks. Simultaneously, the
coupled fluorescence channel provides location information for proteins of interest, which, due
to their small sizes and lack of refractive index contrast are still beyond the reach of phase
microscopy systems. By automatic fusion and analysis of these two channels, along with their
temporal changes, one can easily investigate protein-organelle interactions while simultaneously
minimizing experimental complexity as well as potential label-induced interference to the cell. In
this study, we demonstrate the proof-of-concept by examining the distribution and interactions of
mitochondria and DRP1 under different physiological conditions. We found for the first time that,
in COS7 cells, the mitochondria tends to regulate its position medially between the nucleus and
cell membrane, regardless of the shape and size of the cells. Compared to the absolute distance
from the nucleus (which is currently used in analyzing the spatial distribution of organelles and
proteins) [7], the relative distance is a better metric because it can overcome the heterogeneity in
shapes and sizes of the cell. During apoptosis, the ratio of DRP1 aggregates on mitochondria
with respect to the total DRP1 aggregates does not increase significantly despite the fact that
more DRP1 aggregates are indeed co-localized with mitochondria. At the same time, by utilizing
the high resolution and high contrast original phase image, we can quickly determine that those
DRP1 aggregates not on mitochondria were primarily localized to the ER. Note that here we have
limited the study to relatively thin cells (such as COS7) where the mitochondria, membrane, and
nucleus can be reasonably co-planar as the analysis is based on 2D images. With axial scanning, it
is possible to use our system for 3D correlation study provided that the associated neural networks
are trained on 3D data as well. Further, the OS-PCM concept should be transferrable to other
high-resolution quantitative phase microscopy techniques such as holo-tomographic microscopy
and optical diffraction tomography [15,33] using accordingly-trained neural networks.

In our results, we demonstrate several quantitative metrics such as the number of DRP1
aggregates and the co-localization count with mitochondria which are typically reported through
multiple labeling, with our results (obtained with a single label) matching those of prior literature
reports [26]. However, mitochondria, as sensitive cellular organelles and stress responders,
are highly susceptible to the influence of high-intensity laser excitation, commonly used in
fluorescence imaging, as well as concomitant oxidative stress. Traditional methods utilizing
fluorescence labeling to observe their dynamic behavior may not accurately represent their true
behavior and functionality. OS-PCM, by contrast, allowed us to reduce the quadruplex labeling
to a single stain, simplifying the sample preparation significantly. Importantly, it completely
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removes the need to label large, high-volume landmark structures, substantially reducing the
potential for photo-toxicity. This provides a more accurate representation of the true behavior
and functionality of mitochondria and allows for a better understanding of their interactions with
DRP1 and other cellular components. Further due to the availability of the whole-cell data,
we can compute cell-level parameters (such as the mean distances and the ratio of DRP1 on
mitochondria).

The keys to the above success are (1) the high spatial and temporal resolution of our ultra-oblique
illumination phase contrast microscope, which enables individual organelles to be resolved and
tracked continuously; (2) digital labeling of the organelles from the unlabeled cell images based
on deep learning, which allows facile, automatic analysis of protein-organelle localization, as
well as fission, fusion, and other dynamic organelle information; and (3) combining this with
traditional fluorescence imaging, which “handles” imaging molecular targets that cannot be
imaged by traditional phase contrast. Thus, our method is synergistic with previously developed
fluorescence-based protocols and techniques. Further, OS-PCM, as it starts from a panoramic
phase image, preserves the ability for the experimenter to return to the original phase image and
trace down unexpected behaviors. For example, in this study we showed that non-mitochondrial
DRP1 were primarily localized on the ER, which was also the source of new DRP1 aggregates
during apoptosis. In a traditional fluorescence imaging experiment, if the ER was not labeled by
the experimenter beforehand, they would be “blind” to its position. In OS-PCM, by contrast,
the locations of all of the membrane bound organelles are simultaneously available. Therefore,
our method holds great promise for future label-free visualization and automatic analysis of
pan-organelle dynamics, including their mutual interactions, with minimum perturbation to the
cell.
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